26 research outputs found

    Recombinant Human Interleukin-11 Treatment Enhances Collateral Vessel Growth After Femoral Artery Ligation

    Get PDF
    We investigated the role of recombinant human interleukin-11 (rhIL-11) on in vivo mobilization of CD34+/VEGFR2+ mononuclear cells and collateral vessel remodeling in mouse model of hindlimb ischemia

    VEZF1 elements mediate protection from DNA methylation

    Get PDF
    There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm β-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin stat

    p68RacGAP Is a Novel GTPase-activating Protein That Interacts with Vascular Endothelial Zinc Finger-1 and Modulates Endothelial Cell Capillary Formation

    Get PDF
    The endothelium is required for maintenance of vascular integrity and homeostasis during vascular development and in adulthood. However, little is known about the coordinated interplay between transcription factors and signaling molecules that regulate endothelial cell-dependent transcriptional events. Vascular endothelial zinc finger-1 (Vezf1) is a zinc finger-containing transcription factor that is specifically expressed within the endothelium during vascular development. We have previously shown that Vezf1 potently activates transcription of the endothelin-1 promoter. We now report the identification of p68RacGAP, a novel Vezf1-interacting 68-kDa RhoGAP domain-containing protein. p68RacGAP mRNA is highly expressed in vascular endothelial cells by Northern blot analysis, and immunohistochemical staining of adult mouse tissues identified p68RacGAP in endothelial cells, vascular smooth muscle cells, and epithelial cells in vivo. Rac1 and Vezf1 both bind avidly to p68RacGAP, suggesting that p68RacGAP is not only a GTPase-activating protein for Rac1 but that p68RacGAP may also be part of the protein complex that binds to and modulates Vezf1 transcriptional activity. Functionally p68RacGAP specifically activates the GTPase activity of Rac1 in vivo but not Cdc42 or RhoA. In addition, p68RacGAP potently inhibits Vezf1/DB1-mediated transcriptional activation of the human endothelin-1 promoter and modulates endothelial cell capillary tube formation. Taken together, these data suggest that p68RacGAP is a multifunctional regulatory protein that has a Rac1-specific GTPase-activating activity, regulates transcriptional activity of the endothelin-1 promoter, and is involved in the signal transduction pathway that regulates endothelial cell capillary tube formation during angiogenesis

    Perceptual judgment and saccadic behavior in a spatial distortion with briefly presented stimuli.

    Get PDF
    When observers are asked to localize the peripheral position of a small probe with respect to the mid-position of a spatially extended comparison stimulus, they tend to judge the probe as being more peripheral than the mid-position of the comparison stimulus. This relative mislocalization seems to emerge from differences in absolute localization, that is the comparison stimulus is localized more towards the fovea than the probe. The present study compared saccadic behaviour and relative localization judgements in three experiments and determined the quantitative relationship between both measures. The results showed corresponding effects in localization errors and saccadic behaviour. Moreover, it was possible to estimate the amount of the relative mislocalization by means of the saccadic amplitude

    Sensory Processing of Motor Inaccuracy Depends on Previously Performed Movement and on Subsequent Motor Corrections: A Study of the Saccadic System

    Get PDF
    When goal-directed movements are inaccurate, two responses are generated by the brain: a fast motor correction toward the target and an adaptive motor recalibration developing progressively across subsequent trials. For the saccadic system, there is a clear dissociation between the fast motor correction (corrective saccade production) and the adaptive motor recalibration (primary saccade modification). Error signals used to trigger corrective saccades and to induce adaptation are based on post-saccadic visual feedback. The goal of this study was to determine if similar or different error signals are involved in saccadic adaptation and in corrective saccade generation. Saccadic accuracy was experimentally altered by systematically displacing the visual target during motor execution. Post-saccadic error signals were studied by manipulating visual information in two ways. First, the duration of the displaced target after primary saccade termination was set at 15, 50, 100 or 800 ms in different adaptation sessions. Second, in some sessions, the displaced target was followed by a visual mask that interfered with visual processing. Because they rely on different mechanisms, the adaptation of reactive saccades and the adaptation of voluntary saccades were both evaluated. We found that saccadic adaptation and corrective saccade production were both affected by the manipulations of post-saccadic visual information, but in different ways. This first finding suggests that different types of error signal processing are involved in the induction of these two motor corrections. Interestingly, voluntary saccades required a longer duration of post-saccadic target presentation to reach the same amount of adaptation as reactive saccades. Finally, the visual mask interfered with the production of corrective saccades only during the voluntary saccades adaptation task. These last observations suggest that post-saccadic perception depends on the previously performed action and that the differences between saccade categories of motor correction and adaptation occur at an early level of visual processing

    Identification of RhoGAP22 as an Akt-Dependent Regulator of Cell Motility in Response to Insulin▿‡

    No full text
    Insulin exerts many of its metabolic actions via the canonical phosphatidylinositide 3 kinase (PI3K)/Akt pathway, leading to phosphorylation and 14-3-3 binding of key metabolic targets. We previously identified a GTPase-activating protein (GAP) for Rac1 called RhoGAP22 as an insulin-responsive 14-3-3 binding protein. Insulin increased 14-3-3 binding to RhoGAP22 fourfold, and this effect was PI3K dependent. We identified two insulin-responsive 14-3-3 binding sites (pSer16 and pSer395) within RhoGAP22, and mutagenesis studies revealed a complex interplay between the phosphorylation at these two sites. Mutating Ser16 to alanine blocked 14-3-3 binding to RhoGAP22 in vivo, and phosphorylation at Ser16 was mediated by the kinase Akt. Overexpression of a mutant RhoGAP22 that was unable to bind 14-3-3 reduced cell motility in NIH-3T3 fibroblasts, and this effect was dependent on a functional GAP domain. Mutation of the catalytic arginine of the GAP domain of RhoGAP22 potentiated growth factor-stimulated Rac1 GTP loading. We propose that insulin and possibly growth factors such as platelet-derived growth factor may play a novel role in regulating cell migration and motility via the Akt-dependent phosphorylation of RhoGAP22, leading to modulation of Rac1 activity
    corecore